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Preliminary results: vector integration Integration of multifunctions Pettis integration for multi-functions

Notation

X , Y , . . . Banach spaces;

For X Banach:

BX closed unit ball of X ;
X ∗ dual space; X ∗∗ bidual;
σ(X ,X ∗) = w weak topology in X and σ(X ∗,X ) = w∗ is the
weak∗ topology in X ∗;

(Ω,Σ,µ) is a complete probability space;

L1(µ): µ-integrable real functions.
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The Integral of a multifunction

F : Ω−→ cwk(X ) –convex w -compact

g

G

t0 1

?

6

There are several possibilities to define the integral
of F :

1 to take a reasonable embedding j from
cwk(X ) into the Banach space Y (= `∞(BX ∗))
and then study the integrability of j ◦F ;

2 to take all integrable selectors f of F and
consider∫

F dµ =

{∫
f dµ : f integra. sel.F

}
.

1 Debreu, [Deb67], used the embedding technique together with Bochner
integration for multifunctions with values in cK(X ) –convex compact
subsets of X ;

2 Aumann, [Aum65], used the selectors technique;

3 They used the above definitions in some models in economy.

4 Debreu Nobel prize in 1983; Aumann Nobel prize in 2005.
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What is needed for a multifunction integration theory?

An integration theory of vector-valued functions (Bochner, Pettis,
McShane, etc.) and

a good embedding result j : cwk(X ) → Y ;

a good selection theorem;

or all the above.
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Hausdorff distance and Rådström embedding[Bar93, CV77, KT84, Råd52]

Definition

Take C ,D ⊂ X bounded sets. The Hausdorff distance between C and D is

h(C ,D) := inf{η > 0 : C ⊂D +ηBX , D ⊂ C +ηBX }.

Properties:

1 h is a metric in the family C of non-empty bounded closed subsets of X .

2 (C ,h) is complete (X is complete).

3 ck(X ) = {C ⊂ X : C convex and‖ ‖− compact} closed in (C ,h) (hence
complete).

4 cwk(X ) = {C ⊂ C : C convex y w − compact}, is closed in (C ,h) (hence
complete).

5 X is separable, if and only if, (ck(X ),h) is separable.

6 If Cn
h→ C in C then

C := {x ∈ X : existe xn ∈ Cn con x = lim
n

xn}
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Hausdorff distance and Rådström ambedding[Bar93, CV77, KT84, Råd52]

Definition

For C ⊂ X bounded and x∗ ∈ X ∗, we write

δ
∗(x∗,C) := sup{x∗(x) : x ∈ C}.

Theorem, Rådström embedding [Råd52]

The map j : cwk(X )−→ `∞(BX ∗) given by por j(C)(x∗) = δ ∗(x∗,C) satisfies
the following properties:

(i) j(C +D) = j(C)+ j(D) for each C ,D ∈ cwk(X );

(ii) j(λC) = λ j(C) for each λ ≥ 0 and C ∈ cwk(X );

(iii) h(C ,D) = ‖j(C)− j(D)‖∞ for each C ,D ∈ cwk(X );

(iv) j(cwk(X )) is closed in `∞(BX ∗).
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Kuratowski y Ryll-Nardzewski selection theorem

Definition

F : Ω−→ C (X ) is said to be (Effros) measurable

{t ∈Ω : F (t)∩F 6= /0} ∈Σ for every closed subset F ⊂ X .

If X is separable closed ↔ open.

Definition

A selector for F : Ω−→ 2X is a map f : Ω→ X such that

f (w) ∈ F (w), for every w ∈Ω.

Theorem, Kuratowski and Ryll-Nardzewski [KRN65]

If X is separable, then every measurable multi-función F : Ω−→ C (X ) has a
measurable selector.
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Debreu integral

Definition

F : Ω−→ ck(X ) is said to be Debreu integrable if j ◦F : Ω−→ `∞(BX ∗) is
Bochner integrable.

Remark

The above conditions imply that there is a unique C ∈ ck(X ) satisfying
j(C) = (Bochner)

∫
Ω j ◦F dµ. By definition:

(De)
∫
Ω

F dµ := C .

Definition

Let F : Ω−→ cwk(X ) be a multi-function.

If x∗ ∈ X ∗ we write δ ∗(x∗,F ) to denote the real function defined on Ω by

t 7→ δ
∗(x∗,F (t)).

F : Ω−→ cwk(X ) is said to be scalarly measurable if δ ∗(x∗,F ) is
measurable for each x∗ ∈ X ∗.
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If x∗ ∈ X ∗ we write δ∗(x∗,F ) to denote the real function defined on Ω by t 7→ δ∗(x∗,F (t)).

F : Ω−→ cwk(X ) is said to be scalarly measurable if δ∗(x∗,F ) is measurable for each x∗ ∈ X ∗.
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If ex∗ ∈ (`∞(BX ∗))∗ is the evaluation at x∗ ∈ BX ∗ then
〈ex∗ , j ◦F 〉= δ ∗(x∗,F ).

If F : Ω−→ ck(X ) is Debreu integrable, then F scalarly measurable.

If X is separable and F : Ω−→ cwk(X ) a multi-function then, F is
measurable, if and only if, F is scalarly measurable.

If F : Ω−→ ck(X ) es Debreu integrable, then F has Bochner integrable
selectors.

Remark

If F : Ω−→ ck(X ) Debreu integrable we always can assume X separable.
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Debreu=Auman

If F : Ω −→ ck(X ) is Debreu integrable, then F scalarly
measurable.

If X is separable and F : Ω −→ cwk(X ) a multi-function then,
F is measurable, if and only if, F is scalarly measurable.

If F : Ω −→ ck(X ) es Debreu integrable, then F has Bochner
integrable selectors.

Theorem

Si F : Ω −→ ck(X ) is Debreu integrable then

(D)
∫
Ω

Fdµ = {
∫
Ω

fdµ : f measurable selector for F}.
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Integral de Pettis

Definición

Let X be a separable Banach space. A multi-function F : Ω→ cwk(X ) is said
to be Pettis integrable if

δ ∗(x∗,F ) is integrable for each x∗ ∈ X ∗;

for each A ∈Σ, there is
∫
A F dµ ∈ cwk(X ) such that

δ
∗
(
x∗,

∫
A

F dµ

)
=

∫
A

δ
∗(x∗,F ) dµ for every x∗ ∈ X ∗.

Remark – j ◦F : Ω−→ `∞(BX ∗)

If X is separable, F : Ω−→ cwk(X ) is Pettis integrable iff

(i) 〈ex∗ , j ◦F 〉 ∈L 1(µ) for every x∗ ∈ X ∗;

(ii) for each A ∈Σ, there is (P)
∫
A F dµ ∈ cwk(X ) such that

〈ex∗ , j
(
(P)

∫
A

F dµ

)
〉=

∫
A
〈ex∗ , j ◦F 〉 dµ para todo x∗ ∈ X ∗.
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Set-valued Pettis integration

X set-valued Pettis integral theory pretty much studied recently
[Amr98, DPM05, DPM06, EAH00, HZ02, Zia97, Zia00].

The Milestone result, [EAH00, Zia97, Zia00] and [CV77, Chapter V, §4]

If X is a separable Banach space and F : Ω→ cwk(X ) a multi-function TFAE:

(i) F is Pettis integrable.

(ii) The family WF = {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.

(iii) The family WF is made up of measurable functions and any scalarly
measurable selector of F is Pettis integrable.

In this case, for each A ∈Σ the integral
∫
A F dµ coincides with the set of

integrals over A of all Pettis integrable selectors of F .

Main problems

X If X is a separable Banach space and F : Ω→ cwk(X ): When Pettis
integrability of F equivalent Pettis integrability of j ◦F .

X Is there a reasonable theory of set-valued Pettis integration for X non
necessarily separable.
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Set-valued Pettis integration and embeddings

Theorem, [CR04] and [DPM06]

Assume that X is separable and let F : Ω−→ cwk(X ) be a multi-valued
function. Let us consider the following statements:

(i) j ◦F is Pettis integrable;

(ii) F is Pettis integrable.

Then (i) always implies (ii) and j((P)
∫
A F dµ) =

∫
A j ◦F dµ for every A ∈Σ. If

moreover F (Ω) is h-separable (e.g. F (Ω)⊂ ck(X )) then (ii) implies (i).

Theorem, [CKR07]

For a separable Banach space X the following statements are equivalent:

(i) X has the Schur property.

(ii) (cwk(X ),h) is separable.

(iii) For any complete probability space (Ω,Σ,µ) and any Pettis integrable
multi-function F : Ω→ cwk(X ) the composition j ◦F is Pettis integrable.

(iv) For any Pettis integrable multi-function F : [0,1]→ cwk(X ) the
composition j ◦F is Pettis integrable .
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Set-valued Pettis integration for general Banach spaces

Definition

Let X be a separable Banach space. A multi-function F : Ω→ cwk(X ) is said
to be Pettis integrable if

δ ∗(x∗,F ) is integrable for each x∗ ∈ X ∗;

for each A ∈Σ, there is
∫
A F dµ ∈ cwk(X ) such that

δ
∗
(
x∗,

∫
A

F dµ

)
=

∫
A

δ
∗(x∗,F ) dµ for every x∗ ∈ X ∗.
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Set-valued Pettis integration for general Banach spaces

Definition

Let X be an arbitrary Banach space. A multi-function F : Ω→ cwk(X ) is said
to be Pettis integrable if

δ ∗(x∗,F ) is integrable for each x∗ ∈ X ∗;

for each A ∈Σ, there is
∫
A F dµ ∈ cwk(X ) such that

δ
∗
(
x∗,

∫
A

F dµ

)
=

∫
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δ
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Set-valued Pettis integration for general Banach spaces

Theorem, [CKR07New]

Let X be an Banach space and F : Ω→ cwk(X ) a Pettis integrable
multi-function. Then:

every scalarly measurable selector is Pettis integrable;

F admits a scalarly measurable selector.

Furthermore, F admits a collection {fα}α<dens(X ∗,w ∗) of Pettis integrable
selectors such that

F (ω) = {fα (ω) : α < dens(X ∗,w∗)} for every ω ∈Ω.

Moreover,
∫
A F dµ = ISF (A) for every A ∈Σ.
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Consequences

Corollary, [CKR07New]

Suppose X ∗ is w∗-separable. Let F : Ω→ cwk(X ) be a Pettis integrable
multi-function. Then

∫
A F dµ = ISF (A) for every A ∈Σ.

Corollary, [CKR07New]

If X is reflexive, every scalarly measurable multifunction F : Ω→ cwk(X ) has a
scalarly measurable selector.

Corollary, [CKR07New]

If X has µ-SMSP and µ-PIP (e.g. X is separable or X is reflexive) and
F : Ω→ cwk(X ) a multi-function TFAE:

(i) F is Pettis integrable.

(ii) The family WF = {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.

(iii) The family WF is made up of measurable functions and any scalarly
measurable selector of F is Pettis integrable.
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A proof

Corollary, [CKR07New]

Let F : Ω→ cwk(X ) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.

Lemma, [CKR07New]

Let F : Ω→ cwk(X ) be a multi-function such that δ ∗(x∗,F ) is integrable for
every x∗ ∈ X ∗. The following statements are equivalent:

(i) F is Pettis integrable.

(ii) For each A ∈Σ, the mapping

ϕ
F
A : X ∗→ R, x∗ 7→

∫
A

δ
∗(x∗,F ) dµ,

is τ(X ∗,X )-continuous.

Lemma, [CKR07New]

Let F ,G : Ω→ cwk(X ) be two multi-functions such that F is Pettis integrable,
G is scalarly measurable and, for each x∗ ∈ X ∗, we have δ ∗(x∗,G)≤ δ ∗(x∗,F )
µ-a.e. Then G is Pettis integrable and

∫
A G dµ ⊂

∫
A F dµ for every A ∈Σ.
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Lemma, [Val71]

Let F : Ω→ cwk(X ) be a scalarly measurable multi-function. Fix x∗0 ∈ X ∗ and
consider the multi-function

G : Ω→ cwk(X ), G(ω) := {x ∈ F (ω) : x∗0 (x) = δ
∗(x∗0 ,F (ω))}.

Then G is scalarly measurable.
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Let F : Ω→ cwk(X ) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.

Lemma, [CKR07New]

Let F ,G : Ω→ cwk(X ) be two multi-functions such that F is Pettis integrable,
G is scalarly measurable and, for each x∗ ∈ X ∗, we have δ ∗(x∗,G)≤ δ ∗(x∗,F )
µ-a.e. Then G is Pettis integrable and

∫
A G dµ ⊂

∫
A F dµ for every A ∈Σ.

Lemma, [Val71]

Let F : Ω→ cwk(X ) be a scalarly measurable multi-function. Fix x∗0 ∈ X ∗ and
consider the multi-function

G : Ω→ cwk(X ), G(ω) := {x ∈ F (ω) : x∗0 (x) = δ
∗(x∗0 ,F (ω))}.

Then G is scalarly measurable.
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H. Rådström, An embedding theorem for spaces of convex
sets, Proc. Amer. Math. Soc. 3 (1952), 165–169. MR 0045938
(13,659c)

M. Valadier, Multi-applications mesurables à valeurs convexes
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