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Notation

e X, Y, ...Banach spaces;
@ For X Banach:
o Bx closed unit ball of X;
e X* dual space; X** bidual;
o o(X,X*)=w weak topology in X and o(X*,X) = w* is the
weak* topology in X*;
e (,X,u) is a complete probability space;
@ [1(u): p-integrable real functions.
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The Integral of a multifunction

There are several possibilities to define the integral
of F:

@ to take a reasonable embedding j from
cwk(X) into the Banach space Y (= /w(Bx+))
and then study the integrability of jo F;

F : Q — cwk(X) —convex w-compact

@ to take all integrable selectors f of F and
consider

‘, ‘1
! f /qu: {/fd/.t: f integra. seI.F}.

@ Debreu, [Deb67], used the embedding technique together with Bochner
integration for multifunctions with values in cK(X) —convex compact
subsets of X;

@ Aumann, [Aum65], used the selectors technique;
© They used the above definitions in some models in economy.

© Debreu Nobel prize in 1983; Aumann Nobel prize in 2005.
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What is needed for a multifunction integration theory?

An integration theory of vector-valued functions (Bochner, Pettis,
McShane, etc.) and

@ a good embedding result j : cwk(X) — Y;

@ a good selection theorem;

@ or all the above.
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Hausdorff distance and Radstrom embedding[Bar93, CV77, KT84, Rad52]

Definition
Take C,D C X bounded sets. The Hausdorff distance between C and D is

h(C,D) :=inf{n >0: CC D+nBx, DC C+nBx}.

Properties:
@ his a metric in the family € of non-empty bounded closed subsets of X.
@ (%, h) is complete (X is complete).

@ ck(X)={CCX: C convex and| || — compact} closed in (¢, h) (hence
complete).

Q cwk(X)={CC¥: C convexy w— compact}, is closed in (¢,h) (hence
complete).

@ X is separable, if and only if, (ck(X),h) is separable.
@ If C, > Cin € then

C:={x € X :existe x, € C, con x =limxp}
n
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Hausdorff distance and Radstrom ambedding[Bar93, CV77, KT84, Rad52]

Definition
For C C X bounded and x* € X*, we write

0% (x*,C) :=sup{x*(x): xe C}.

Theorem, Radstrém embedding [Rad52]

The map j : cwk(X) — loo(Bx+) given by por j(C)(x*) = 6*(x*, C) satisfies

the following properties:

(i) J(C+D)=j(C)+,(D) for each C,D € cwk(X);

(i) J(AC)=Aj(C) for each A >0 and C € cwk(X);
)
)

(iii) h(C,D) = |j(C)—j(D)||e for each C,D € cwk(X);
(iv) j(ewk(X)) is closed in £wo(Bx:).
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Definition

F:Q — %(X) is said to be (Effros) measurable

{teQ: F(t)NF#0} X for every closed subset F C X.

If X is separable closed < open.

-

Definition

A selector for F: Q — 2X is a map f: Q — X such that

f(w) € F(w), for every w € Q.

<

Theorem, Kuratowski and Ryll-Nardzewski [KRN65]

If X is separable, then every measurable multi-funcién F : Q — %(X) has a
measurable selector.
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Debreu integral

Definition

Let F:Q — cwk(X) be a multi-function.
@ If x* € X* we write §*(x*,F) to denote the real function defined on Q by t — §*(x*, F(t)).

@ F:Q— cwk(X) is said to be scalarly measurable if §*(x*, F) is measurable for each x* € X*.

If ex~ € (¢°(Bx-))" is the evaluation at x* € Bx: then
(e, joF)=8"(x",F).

@ If F:Q — ck(X) is Debreu integrable, then F scalarly measurable.

@ If X is separable and F : Q — cwk(X) a multi-function then, F is
measurable, if and only if, F is scalarly measurable.

@ If F:Q — ck(X) es Debreu integrable, then F has Bochner integrable
selectors.

: Q — ck(X) Debreu integrable we always can assume X separable.
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Debreu=Auman

o If F:Q — ck(X) is Debreu integrable, then F scalarly
measurable.

e If X is separable and F : Q — cwk(X) a multi-function then,
F is measurable, if and only if, F is scalarly measurable.

o If F:Q — ck(X) es Debreu integrable, then F has Bochner
integrable selectors.

Si F:Q — ck(X) is Debreu integrable then

(D)/ Fdu = {/ fdu : f measurable selector for F}.
Q Q
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Let X be a separable Banach space. A multi-function F : Q — cwk(X) is said
to be Pettis integrable if

@ 0*(x*,F) is integrable for each x* € X*;
@ for each A€ X, thereis [, F du € cwk(X) such that

1 (X*a/Fd,ll):/S*(x*,F) du for every x* € X*.
A A

Remark — joF : Q — (e (Bx-+)

If X is separable, F : Q — cwk(X) is Pettis integrable iff
(i) (exr,joF) e L (u) for every x* € X*;
(ii) for each A€ X, there is (P) [4 F du € cwk(X) such that

(ex+ ,J /F du ) / (ex*,joF) du para todo x* € X*.
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v set-valued Pettis integral theory pretty much studied recently
[Amr98, DPMO05, DPMO06, EAH00, HZ02, Zia97, Zia00].

The Milestone result, [EAHO00, Zia97, Zia00] and [CV77, Chapter V, §4]

If X is a separable Banach space and F : Q — cwk(X) a multi-function TFAE:

(i) F is Pettis integrable.
(i) The family Wg = {6 (x*,F) : x* € Bx+} is uniformly integrable.
(iii) The family Wg is made up of measurable functions and any scalarly
measurable selector of F is Pettis integrable.

In this case, for each A € X the integral [, F du coincides with the set of

integrals over A of all Pettis integrable selectors of F.
”

Main problems

v If X is a separable Banach space and F : Q — cwk(X): When Pettis
integrability of F equivalent Pettis integrability of jo F.

v’ Is there a reasonable theory of set-valued Pettis integration for X non
necessarily separable.
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Set-valued Pettis integration and embeddings

Theorem, [CR04] and [DPMO06]

Assume that X is separable and let F : Q — cwk(X) be a multi-valued
function. Let us consider the following statements:

(i) joF is Pettis integrable;
(i) F is Pettis integrable.

Then (i) always implies (ii) and j((P) [4 F du) = [4joF du for every Ac . If
moreover F(Q2) is h-separable (e.g. F(€2) C ck(X)) then (ii) implies (i).

V.
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Set-valued Pettis integration and embeddings

Theorem, [CR04] and [DPMO06]

Assume that X is separable and let F : Q — cwk(X) be a multi-valued
function. Let us consider the following statements:

(i) joF is Pettis integrable;
(i) F is Pettis integrable.

Then (i) always implies (ii) and j((P) [4 F du) = [4joF du for every Ac . If
moreover F(Q2) is h-separable (e.g. F(€2) C ck(X)) then (ii) implies (i).

Theorem, [CKRO07]

For a separable Banach space X the following statements are equivalent:
(i) X has the Schur property.
(i) (ewk(X),h) is separable.
(iii) For any complete probability space (£2,%,u) and any Pettis integrable
multi-function F : Q — cwk(X) the composition jo F is Pettis integrable.

(iv) For any Pettis integrable multi-function F : [0,1] — cwk(X) the
composition jo F is Pettis integrable .
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Set-valued Pettis integration for general Banach spaces

Let X be a separable Banach space. A multi-function F : Q — cwk(X) is said
to be Pettis integrable if

@ §*(x*,F) is integrable for each x* € X*;
@ for each A€ X, thereis [, F du € cwk(X) such that

6*(x*,/AF d/,t) :/Aﬁ*(x*,F) du for every x* € X*.
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Set-valued Pettis integration for general Banach spaces

Let X be an arbitrary Banach space. A multi-function F : Q — cwk(X) is said
to be Pettis integrable if

@ §*(x*,F) is integrable for each x* € X*;
@ for each A€ X, thereis [, F du € cwk(X) such that

6*(x*,/AF d/,t) :/Aﬁ*(x*,F) du for every x* € X*.




Pettis integration for multi-functions
oce

Set-valued Pettis integration for general Banach spaces

Theorem, [CKRO7New]

Let X be an Banach space and F : Q — cwk(X) a Pettis integrable
multi-function. Then:

@ every scalarly measurable selector is Pettis integrable;
@ F admits a scalarly measurable selector.

Furthermore, F admits a collection {fa}a<dens(x*_’wi) of Pettis integrable
selectors such that

F(o) = {fa(w) : o < dens(X*,w*)} for every m € Q.

Moreover, [, F du = ISg(A) for every A€ X.
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Consequences

Corollary, [CKRO7New]

Suppose X* is w*-separable. Let F:Q — cwk(X) be a Pettis integrable
multi-function. Then [, F du = ISg(A) for every A€ L.
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Consequences

Corollary, [CKRO7New]

Suppose X* is w*-separable. Let F:Q — cwk(X) be a Pettis integrable
multi-function. Then [, F du = ISg(A) for every A€ L.

Corollary, [CKRO7New]

If X is reflexive, every scalarly measurable multifunction F : Q — cwk(X) has a
scalarly measurable selector.
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Consequences

Corollary, [CKRO7New]

Suppose X* is w*-separable. Let F:Q — cwk(X) be a Pettis integrable
multi-function. Then [, F du = ISg(A) for every A€ L.

Corollary, [CKRO7New]

If X is reflexive, every scalarly measurable multifunction F : Q — cwk(X) has a
scalarly measurable selector.

Corollary, [CKRO7New]

If X has u-SMSP and u-PIP (e.g. X is separable or X is reflexive) and
F : Q — cwk(X) a multi-function TFAE:

(i) F is Pettis integrable.
(i) The family Wg = {8*(x*,F) : x* € Bx+} is uniformly integrable.

(iii) The family Wg is made up of measurable functions and any scalarly
measurable selector of F is Pettis integrable.

A
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Corollary, [CKRO7New]

Let F:Q — cwk(X) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.
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Corollary, [CKRO7New]

Let F:Q — cwk(X) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.

Lemma, [CKRO7New]

Let F: Q — cwk(X) be a multi-function such that 6*(x*, F) is integrable for
every x* € X*. The following statements are equivalent:

(i) F is Pettis integrable.
(ii) For each A € X, the mapping

(pz_:X*—ﬂR, x*»—>/5*(x*,F) du,
A

is T(X™*, X)-continuous.
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Corollary, [CKRO7New]

Let F:Q — cwk(X) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.

Lemma, [CKRO7New]

Let F: Q — cwk(X) be a multi-function such that 6*(x*, F) is integrable for
every x* € X*. The following statements are equivalent:

(i) F is Pettis integrable.

(ii) For each A € X, the mapping
(P,Z_ XF =R, x* »—>/ 6*(x*,F) du,
A

is T(X™*, X)-continuous.

Lemma, [CKRO7New]

| A

Let F,G : Q — cwk(X) be two multi-functions such that F is Pettis integrable,
G is scalarly measurable and, for each x* € X*, we have 6*(x*, G) < 6*(x*, F)
u-a.e. Then G is Pettis integrable and [, G du C [, F du for every A€ X.

A
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Corollary, [CKRO7New]

Let F:Q — cwk(X) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.
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Corollary, [CKRO7New]

Let F:Q — cwk(X) be a Pettis integrable multi-function. Then F admits a Pettis integrable selector.

Lemma, [CKRO7New]

Let F,G : Q — cwk(X) be two multi-functions such that F is Pettis integrable,
G is scalarly measurable and, for each x* € X*, we have §*(x*, G) < 6*(x*, F)
u-a.e. Then G is Pettis integrable and [, G du C [, F du for every A€ X.

| A,

Lemma, [Val71]

Let F:Q — cwk(X) be a scalarly measurable multi-function. Fix x5 € X* and
consider the multi-function

G:Q— awk(X), G(w):={xeF(o): x3(x)=086"(x5,F(w))}

Then G is scalarly measurable.

A\
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